Nearest Neighbor Complexity and Boolean Circuits

Mason DiCicco*, Vladimir Podolskii[†], Daniel Reichman*

ITCS 2025

^{*}Worcester Polytechnic Institute. [mtdicicco@wpi.edu, dreichman@wpi.edu]

[†]Tufts University. [vladimir.podolskii@tufts.edu]

Nearest neighbor complexity

Convex polytopes

Boolean circuits

Open questions

Nearest neighbor complexity Background

Definitions

Examples

Convex polytopes

Boolean circuits

Open questions

How to color the "?" point?

How to color the "?" point?

Nearest neighbor rule (informal)

Just copy the color of the closest point

How to color the "?" point?

Definition (Nearest neighbor rule)

Let $S \subseteq X$ be a set of labelled **anchors**.

- ightharpoonup On input $\vec{q} \in X$
- ► Compute \vec{q} 's **nearest neighbor** in S,

$$\vec{p^*} = \arg\min_{\vec{p} \in S} \{ \operatorname{dist}(\vec{p}, \vec{q}) \}$$

▶ Return (the label of) $\vec{p^*}$

Nearest neighbors

Historical context*

- ► Known as early as 10'th century (Alhazen 965-1040)
- ▶ Often regarded as Ockham's razor (Ockham 1287-1347)
- ▶ Modern formulation due to Fix and Hodges [1952]

Nearest neighbors

Main areas of study

- ► Nearest neighbors as a learning algorithm
 - ► Cover and Hart [1967]: The NN rule has asymptotically optimal error
- ▶ Nearest neighbors as a data structure (given anchors $S \subseteq \{0,1\}^d$)
 - **Brute force:** O(d|S|) query time and O(1) space
 - **Precompute everything:** O(1) query time and $O(|S|2^d)$ space
 - ► Curse of dimensionality: "sub-linear query time ⇒ exponential space"
- ► *6*-approximate nearest neighbors
 - ▶ Indyk and Motwani [1998]: $O(d \log(|S|)/\epsilon^2)$ query time and $|S|^{O(\log(1/\epsilon)/\epsilon^2)}$ space

New ideas

Recently, more focus on representational complexity

"How many anchors do we need to (exactly) represent a given function?"

- Introduced by Hajnal, Liu, and Turán [2022]
- ▶ Adds to the study of **Boolean function complexity** (e.g. [Kilic et al., 2023])
- ► Connections to **tropical** (min-plus) mathematics

Nearest neighbor complexity

Background

Definitions

Examples

Convex polytopes

Boolean circuits

Open questions

"Nearest" with respect to...

For $\vec{x}, \vec{y} \in \mathbb{R}^n$, let Δ denote the **squared Euclidean distance**

$$\Delta(\vec{x}, \vec{y}) := ||\vec{x} - \vec{y}||_2^2$$

If $\vec{x}, \vec{y} \in \{0,1\}^n$, then Δ is equal to the **Hamming distance** $\sum_{i=1}^n |x_i - y_i|$

Representations

A **Nearest Neighbor (NN)** representation of $f:\{0,1\}^n \to \{0,1\}$ consists of "positive" and "negative" **anchors** $P,N\subseteq \mathbb{R}^n$ such that

- ▶ $f(\vec{x}) = 1$ if there exists a $\vec{p} \in P$ with $\Delta(\vec{x}, \vec{p}) < \Delta(\vec{x}, \vec{q})$ for all $\vec{q} \in N$.
- ▶ $f(\vec{x}) = 0$ if there exists a $\vec{q} \in N$ with $\Delta(\vec{x}, \vec{q}) < \Delta(\vec{x}, \vec{p})$ for all $\vec{p} \in P$.

Complexity classes

Let NN also refer to the class of polynomial size NN representations:

$$f: \{0,1\}^n \to \{0,1\} \in \mathsf{NN} \iff f \text{ has a } \mathrm{poly}(n)\text{-anchor NN rep.}$$

▶ Let HNN be the same class, where **anchors** are **Boolean** (i.e., $P, N \subseteq \{0, 1\}^n$).

Some questions

What is the expressive power of nearest neighbors?

- 1. Which functions have "small" NN representations?
- 2. Does NN have a significant advantage over HNN?
- 3. How does NN relate to other complexity classes (e.g., circuits, decision trees)?

Nearest neighbor complexity

Background

Definitions

Examples

Convex polytopes

Boolean circuits

Open questions

Question 1

Which functions have "small" NN representations?*

^{*}Every Boolean function has a "trivial" representation with 2^n anchors. $\langle \square \rangle \langle \partial \rangle \rangle \langle \partial \rangle \rangle \langle \partial \rangle \rangle \langle \partial \rangle \langle$

Example (threshold functions)

Definition

THR is the class of **threshold functions**. A function $f:\{0,1\}^n \to \{0,1\} \in \mathsf{THR}$ if

$$f(x_1, \dots, x_n) = 1 \iff a_1 x_1 + \dots + a_n x_n \ge a_0$$

for some coefficients $a_i \in \mathbb{R}$.

Example (threshold functions)

Theorem

THR = two-anchor NN.

Proof.

Both are equivalent to half-space containment

Question 2

Does NN have a significant advantage over HNN?

Definition

The XOR function is defined by

$$\mathsf{XOR}(x_1,\cdots,x_n) = \sum_{i=1}^n x_i \mod 2$$

Theorem (Hajnal et al. [2022])

$$NN(XOR) \le n+1$$

Proof.

Let
$$\vec{p_\ell} = \left(\frac{\ell}{n}, \cdots, \frac{\ell}{n}\right)$$

- $ightharpoonup P = \{\vec{p_i} \mid i \text{ odd}\}$
- $ightharpoonup N = \{ \vec{p_i} \mid i \text{ even} \}$

If
$$\sum_i x_i = w$$
, then for all $\ell \neq w$,

$$||\vec{x} - \vec{p}_w||_2 < ||\vec{x} - \vec{p}_\ell||_2$$

Theorem (Hajnal et al. [2022])

$$\mathsf{HNN}(\mathsf{XOR}) = 2^n$$

Proof.

- 1. Suppose \vec{x} is not an anchor.
- 2. It's neighbors have **opposite parity**, so they can't be anchors either.
- 3. And so on... $\Rightarrow \leftarrow$

Question 3

How does NN relate to **other complexity classes**?

Definition

The majority function is defined by

$$\mathsf{MAJ}(x_1,\cdots,x_n)=1\iff \sum_{i=1}^n x_i\geq \frac{n}{2}$$

For all **odd** n > 0,

$$HNN(MAJ) = 2$$

Proof.

Take
$$P = \{1^n\}$$
, $N = \{0^n\}$.

Theorem

For all **even** n > 0.

$$\mathsf{HNN}(\mathsf{MAJ}) = \frac{n}{2} + 2$$

Definition

AC⁰ is the class of **small*** circuits with AND, OR, and NOT gates.

Theorem (Hastad [1986])

 $MAJ \not\in AC^0$

Corollary

 $\mathsf{HNN} \not\subset \mathsf{AC}^0$

Nearest neighbor complexity

Convex polytopes

Boolean circuits

Open questions

Nearest neighbor complexity

Convex polytopes MAJ for even n

Boolean circuits

Open questions

Even majority

Theorem (DiCicco et al. [2024]) For all even n>0, ${\sf HNN(MAJ)}=\frac{n}{2}+2$

Proof (lower bound)

Let $P \cup N$ be an HNN representation of MAJ for even n.

Claim

For each $\vec{x} \in \{0,1\}^n$ with $|\vec{x}| = n/2$, there is a $\vec{p} \in P$ with $\vec{p} \neq \vec{1}$ with $\vec{x} \leq \vec{p}.*$

^{*} in coordinate-wise order

Proof (claim)

Proof of Claim.

- ▶ Let $\vec{p} \in P$ be nearest to \vec{x} with $x_i = 1$ but $p_i = 0$.
- ▶ Let $\vec{y} = \vec{x} \vec{e_i}$ and let $\vec{q} \in N$ be nearest to \vec{y} . Then,

$$\begin{split} \Delta(\vec{x},\vec{p}) &= \Delta(\vec{y},\vec{p}) + 1 \\ \text{But } \Delta(\vec{x},\vec{p}) &< \Delta(\vec{x},\vec{q}) \end{split} \qquad > \Delta(\vec{y},\vec{q}) + 1 \\ \leq \Delta(\vec{y},\vec{q}) + 1 \end{split}$$

Proof (claim)

Proof of Claim.

- ▶ So $\vec{x} \leq \vec{p}$.
- ► (Similarly, $\vec{q} \leq \vec{y}$.)
- ► Finally, $|\vec{y}| = n/2 1$ implies $\Delta(\vec{x}, \vec{p}) < n/2$ and $\vec{p} \neq \vec{1}$.

Proof (lower bound)

Let $P \cup N$ be an HNN representation of MAJ for even n.

Claim For each $\vec{x} \in \{0,1\}^n$ with $|\vec{x}| = n/2$, there is a $\vec{p} \in P$ with $\vec{p} \neq \vec{1}$ with $\vec{x} \leq \vec{p}$.

Proof (lower bound)

Let $P \cup N$ be an HNN representation of MAJ for even n.

Claim

For each $\vec{x} \in \{0,1\}^n$ with $|\vec{x}| = n/2$, there is a $\vec{p} \in P$ with $\vec{p} \neq \vec{1}$ with $\vec{x} \leq \vec{p}$.

- Now assume $|P \cup N| \le n/2 + 1$
- ▶ Since N cannot be empty, $|P| \le n/2$
- ► Construct $\vec{x} \in \{0,1\}^n$ which contradicts the claim:
 - For each $\vec{p} \in P$ find some i where $p_i = 0$, and set $x_i = 1$.

Theorem

Convex polytopes with m faces have m+1 anchor NN representations.

Proof.

Place one positive anchor \vec{p} inside the polytope, and **reflect** \vec{p} over each face.

Theorem

 $\mathsf{AND} \circ \mathsf{THR} \subseteq \mathsf{NN}$

Corollary

Any CNF formula with m clauses has an m+1-anchor NN representation

Definition

The components of $f:\{0,1\}^n \to \{0,1\}$ are the connected components of $f^{-1}(1)$ in the Hamming cube graph.

Figure: One component

Figure: Four components

Theorem

If f has m components, then any HNN representation of f has at least m positive anchors.

Proof.

- ► Suppose a component *C* contains no anchors.
- ▶ Let $\vec{p} \in P$ be nearest to $\vec{x} \in C$
 - $\implies \vec{p}$ is in a different component
- Let $\vec{y} \in f^{-1}(0)$ lie on the **shortest** $\vec{x} \to \vec{p}$ **path** and let $\vec{q} \in N$ be nearest to \vec{y}
- $ightharpoonup \Delta$ inequality $\Longrightarrow \Delta(\vec{x}, \vec{p}) > \Delta(\vec{x}, \vec{q}) \Longrightarrow \Longrightarrow$

Lemma

There exists a CNF with $m=\Theta(n)$ clauses and $2^{\Omega(m)}$ components

Corollary

There exists a CNF with $\Theta(n)$ clauses with no $\operatorname{poly}(n)$ -size HNN representation

Summary

- ► Every CNF has a polynomial size NN representation
- ► There exists a CNF with no polynomial-size HNN representation

Nearest neighbor complexity

Convex polytopes

Boolean circuits

Open questions

Connections to circuits

Questions

- ► What circuit classes **contain** NN?
 - ► Can a **depth-two circuit** compute NN?
- ► What circuit classes are **contained in NN**?
 - ► Can NN help us prove circuit lower bounds?

Nearest neighbor complexity

Convex polytopes

Boolean circuits

Circuits computing nearest neighbors
Min-plus polynomial threshold function

Open questions

Nearest neighbors in depth three

Definition

OR o AND o THR is the class of depth-three circuits with a polynomial number of threshold gates at level one, conjunctions at level two, and a disjunction at the output.

Theorem (Murphy [1990])

 $\mathsf{NN} \subseteq \mathsf{OR} \circ \mathsf{AND} \circ \mathsf{THR}$

Nearest neighbors in depth three

Recall that $AND \circ THR \subseteq NN$, so

 $\mathsf{AND} \circ \mathsf{THR} \subseteq \mathsf{NN} \subseteq \mathsf{OR} \circ \mathsf{AND} \circ \mathsf{THR}$

Equivalently,

Convex polytopes* \subseteq NN \subseteq unions of convex polytopes*

Nearest neighbors in depth two

What about **Boolean** anchors?

Theorem

 $\mathsf{HNN}\subseteq\mathsf{THR}\circ\mathsf{MAJ}$

Nearest neighbor complexity

Convex polytopes

Boolean circuits

Circuits computing nearest neighbors

Min-plus polynomial threshold functions

Sub-functions

Open questions

Min-plus polynomial threshold functions

Definition (Hansen and Podolskii [2015])

A min-plus polynomial threshold function (mpPTF) is an expression*

$$\min_{i \le \ell_1}(L_i(\vec{x})) \le \min_{j \le \ell_2}(R_j(\vec{x}))$$

where $\{L_1, \dots, L_{\ell_1}\} \cup \{R_1, \dots, R_{\ell_2}\}$ are integer linear forms.

- ▶ The number of **terms** in an mpPTF is equal to $\ell_1 + \ell_2$.
- ▶ The maximum weight is equal to the largest absolute value of a coefficient.

Min-plus polynomial threshold functions

Definition

- ightharpoonup mpPTF(∞) is the class of mpPTFs with poly(n) terms and unbounded weight.
- ightharpoonup mpPTF(poly(n)) is the same class with poly(n)-bounded maximum weight.

Observation

The distance from $\vec{x} \in \{0,1\}^n$ to an anchor $\vec{p} \in \mathbb{R}^n$ is a **linear form**:

$$\Delta(\vec{x}, \vec{p}) = \sum_{i} (x_i - p_i)^2 = \sum_{i} \left[x_i^2 - 2p_i x_i + p_i^2 \right]$$
$$= \sum_{i} \left[(1 - 2p_i) x_i + p_i^2 \right]$$
$$= \langle \vec{1} - 2\vec{p}, \vec{x} \rangle + ||\vec{p}||_2^2.$$

Lemma

- ▶ $NN \subseteq mpPTF(\infty)$
- $\blacktriangleright \ \mathsf{HNN} \subseteq \mathsf{mpPTF}(\mathrm{poly}(n))$

Proof.

The nearest anchor to
$$\vec{x}$$
 is positive $\iff \min_{\vec{p} \in P}(\Delta(\vec{x}, \vec{p})) \leq \min_{\vec{q} \in N}(\Delta(\vec{x}, \vec{q}))$

What about the converse?

Lemma (Hansen and Podolskii [2015])

 $\mathsf{XOR} \in \mathsf{mpPTF}(\mathrm{poly}(n))$

What about the converse?

Proof.

Take the mpPTF

$$\min \{L_0(\vec{x}), L_2(\vec{x}), \dots\} \le \min \{L_1(\vec{x}), L_3(\vec{x}), \dots\}$$

where
$$L_i(\vec{x}) = i^2 - 2i \cdot (\sum_{i=1}^n x_i)$$
.

Suppose $\sum_{i=1}^{n} x_i = \ell$ and let $k \neq \ell$.

- ► $L_{\ell}(\vec{x}) = -\ell^2$ ► $L_k(\vec{x}) = k^2 2k\ell = (k \ell)^2 \ell^2$

What about the converse?

What about the unbounded case?

Conjecture

 $\mathsf{NN} \subsetneq \mathsf{mpPTF}(\infty)$

Nearest neighbor complexity

Convex polytopes

Boolean circuits

Circuits computing nearest neighbors
Min-plus polynomial threshold functions
Sub-functions

Open questions

Outline

Suppose we want to prove $mpPTF(\infty) \subseteq NN$

Given an mpPTF

$$\min_{i \le \ell_1} (L_i(\vec{x})) \le \min_{j \le \ell_2} (R_j(\vec{x}))$$

If we can construct anchors $P = \{\vec{p}_1, \cdots, \vec{p}_{\ell_1}\}$ where

$$\Delta(\vec{x}, \vec{p_i}) = L_i(\vec{x})$$

(similarly $N=\{ec{q}_1,\cdots,ec{q}_{\ell_2}\}$) then we are done.

Idea 1

1. The distance from \vec{x} to the all-zero anchor $\vec{0}$ is

$$\Delta(\vec{x}, \vec{0}) = x_1 + x_2 + \dots + x_n$$

2. If we restrict the input space by **identifying** $x_1 = x_2$, then

$$\Delta(\vec{x}, \vec{0}) = 2x_1 + x_3 + \dots + x_n$$

3. \implies We can **control coefficients** by identifying input variables!

Idea 2

1. The distance from \vec{x} to the all-zero anchor $\vec{0}$ is

$$\Delta(\vec{x}, \vec{0}) = x_1 + x_2 + \dots + x_n$$

2. Let $\vec{x^*} = (\vec{x}, 1)$. Then,

$$\Delta(\vec{x^*}, \vec{0}) = x_1 + x_2 + \dots + x_n + 1$$

3. \implies We can **introduce constant terms** by adding constant variables!

Sub-functions

Definition

A subfunction of $g(x_1, \dots, x_n)$ is obtained by fixing input variables as follows:

- ldentification of variables (e.g., $x_1 = x_2$)
- Assigning variables to constants (e.g., $x_1 = 0$).

Example

Subfunctions of $x_1 + \cdots + x_n$ introduce coefficients and constant terms:

$$x_1 = x_2$$
 and $x_3 = \cdots = x_n = 1$ yields $2x_1 + (n-2)$

Closure

Definition

Let \mathcal{C} be a collection of functions.

The **closure** \overline{C} is the collection of **sub-functions** of elements of C obtained by identifying/assigning **polynomially-many variables***

This is quite natural: Circuit classes are already closed under this operation.

^{*}with respect to the input dimension of the sub-function

Nearest neighbors vs. mpPTFs

Theorem

- ightharpoonup $\overline{\mathsf{NN}} = \mathsf{mpPTF}(\infty)$
- $\blacktriangleright \ \overline{\mathsf{HNN}} = \mathsf{mpPTF}(\mathrm{poly}(n))$

Proof.

〈 Apply Ideas 1 and 2 〉

Corollary 1 (HNN)

Corollary

 $\mathsf{HNN} \not\subset \mathsf{MAJ} \circ \mathsf{MAJ}$

Proof Sketch.

There exists a function f (OMB \circ AND₂) where

- $ightharpoonup f \in \mathsf{mpPTF}(\mathrm{poly}(n))$ by Hansen and Podolskii [2015], but
- ▶ $f \notin MAJ \circ MAJ$ by Buhrman et al. [2007]

Corollary 2 (NN)

Corollary

 $\mathsf{NN} \not\supset \mathsf{AND} \circ \mathsf{OR} \circ \mathsf{AND}_2$

Proof Sketch.

There exists a function f where

- ▶ $f \notin \mathsf{mpPTF}(\infty)$ by Hansen and Podolskii [2015], but
- ▶ $f \in \mathsf{AND} \circ \mathsf{OR} \circ \mathsf{AND}_2$ by Hajnal et al. [1993]

Summary

- $\blacktriangleright \ \overline{\mathsf{NN}} = \mathsf{mpPTF}(\infty)$
- $\blacktriangleright \overline{\mathsf{HNN}} = \mathsf{mpPTF}(\mathrm{poly}(n))$
- ▶ ⇒ known results about mpPTF also apply to nearest neighbors

More results

▶ The more general k-nearest neighbors rule has the same (closure) relationship with a more general version of mpPTF, based on expressions

The k'th smallest value in $\{L_i(\vec{x})\} \leq$ The k'th smallest value in $\{R_i(\vec{x})\}$

- ▶ When k = O(1), $\overline{\mathsf{kNN}} = \overline{\mathsf{NN}}$
- ▶ When k = O(n), $\overline{\text{kNN}}$ contains SYM \circ MAJ and ELDL

Nearest neighbor complexity

Convex polytopes

Boolean circuits

Open questions

Open questions

Open questions

- ightharpoonup Does $NN = \overline{NN}$?
 - ▶ Is there $f \in \mathsf{mpPTF}(\infty)$ but $f \notin \mathsf{NN}$?
- ► How does **bit-complexity** effect the expressiveness of NN?
 - ▶ Kilic et al. [2023]: Can we represent THR with only log(n) bits per coordinate?
- What about approximate representations?

Thank you

References I

- Harry Buhrman, Nikolay Vereshchagin, and Ronald de Wolf. On computation and communication with small bias. In **Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)**, pages 24–32. IEEE, 2007.
- Thomas Cover and Peter Hart. Nearest neighbor pattern classification. **IEEE** transactions on information theory, 13(1):21–27, 1967.
- Mason DiCicco, Vladimir Podolskii, and Daniel Reichman. Nearest neighbor complexity and boolean circuits. arXiv preprint arXiv:2402.06740, 2024.
- Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis: Nonparametric discrimination: Small sample performance. 1952.
- András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold circuits of bounded depth. **Journal of Computer and System Sciences**, 46(2):129–154, 1993.
- Péter Hajnal, Zhihao Liu, and György Turán. Nearest neighbor representations of boolean functions. **Information and Computation**, 285:104879, 2022.

References II

- Kristoffer Arnsfelt Hansen and Vladimir V Podolskii. Polynomial threshold functions and boolean threshold circuits. **Information and Computation**, 240:56–73, 2015.
- John Hastad. Almost optimal lower bounds for small depth circuits. In **Proceedings** of the eighteenth annual ACM symposium on Theory of computing, pages 6–20, 1986.
- Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In **Proceedings of the thirtieth annual ACM symposium on Theory of computing**, pages 604–613, 1998.
- Kordag Mehmet Kilic, Jin Sima, and Jehoshua Bruck. On the information capacity of nearest neighbor representations. In **2023 IEEE International Symposium on Information Theory (ISIT)**, pages 1663–1668. IEEE, 2023.
- Owen J Murphy. Nearest neighbor pattern classification perceptrons. **Proceedings of the IEEE**, 78(10):1595–1598, 1990.
- Marcello Pelillo. Alhazen and the nearest neighbor rule. **Pattern Recognition Letters**, 38:34–37, 2014.