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How to color the “?” point?

?

Definition (Nearest neighbor rule)
Let S ⊆ X be a set of labelled anchors.

▶ On input q⃗ ∈ X

▶ Compute q⃗ ’s nearest neighbor in S,

p⃗∗ = arg minp⃗∈S{dist(p⃗, q⃗)}

▶ Return (the label of) p⃗∗



Nearest neighbors

Historical context*
▶ Known as early as 10’th century (Alhazen 965-1040)

▶ Often regarded as Ockham’s razor (Ockham 1287-1347)

▶ Modern formulation due to Fix and Hodges [1952]

*[Pelillo, 2014]



Nearest neighbors

Main areas of study
▶ Nearest neighbors as a learning algorithm

▶ Cover and Hart [1967]: The NN rule has asymptotically optimal error

▶ Nearest neighbors as a data structure (given anchors S ⊆ {0, 1}d)
▶ Brute force: O(d|S|) query time and O(1) space
▶ Precompute everything: O(1) query time and O(|S|2d) space
▶ Curse of dimensionality: “sub-linear query time =⇒ exponential space”

▶ ϵ-approximate nearest neighbors
▶ Indyk and Motwani [1998]: O(d log(|S|)/ϵ2) query time and |S|O(log(1/ϵ)/ϵ2) space



New ideas

Recently, more focus on representational complexity

“How many anchors do we need to (exactly) represent a given function?”

▶ Introduced by Hajnal, Liu, and Turán [2022]

▶ Adds to the study of Boolean function complexity (e.g. [Kilic et al., 2023])

▶ Connections to tropical (min-plus) mathematics
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“Nearest” with respect to...

For x⃗, y⃗ ∈ Rn, let ∆ denote the squared Euclidean distance

∆(x⃗, y⃗) := ||x⃗ − y⃗||22

If x⃗, y⃗ ∈ {0, 1}n, then ∆ is equal to the Hamming distance ∑n
i=1 |xi − yi|



Representations

A Nearest Neighbor (NN) representation of f : {0, 1}n → {0, 1} consists of
“positive” and “negative” anchors P, N ⊆ Rn such that

▶ f(x⃗) = 1 if there exists a p⃗ ∈ P with ∆(x⃗, p⃗) < ∆(x⃗, q⃗) for all q⃗ ∈ N .

▶ f(x⃗) = 0 if there exists a q⃗ ∈ N with ∆(x⃗, q⃗) < ∆(x⃗, p⃗) for all p⃗ ∈ P .



Complexity classes

▶ Let NN also refer to the class of polynomial size NN representations:

f : {0, 1}n → {0, 1} ∈ NN ⇐⇒ f has a poly(n)-anchor NN rep.

▶ Let HNN be the same class, where anchors are Boolean (i.e., P, N ⊆ {0, 1}n).



Some questions

What is the expressive power of nearest neighbors?

1. Which functions have “small” NN representations?

2. Does NN have a significant advantage over HNN?

3. How does NN relate to other complexity classes (e.g., circuits, decision trees)?
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Question 1

Which functions have “small” NN representations?∗

∗Every Boolean function has a “trivial” representation with 2n anchors.



Example (threshold functions)

Definition
THR is the class of threshold functions. A function f : {0, 1}n → {0, 1} ∈ THR if

f(x1, · · · , xn) = 1 ⇐⇒ a1x1 + · · · + anxn ≥ a0

for some coefficients ai ∈ R.



Example (threshold functions)

Theorem
THR = two-anchor NN.

Proof.
Both are equivalent to half-space containment



Question 2

Does NN have a significant advantage over HNN?



Example (parity)

Definition
The XOR function is defined by

XOR(x1, · · · , xn) =
n∑

i=1
xi mod 2



Example (parity)

Theorem (Hajnal et al. [2022])

NN(XOR) ≤ n + 1



Example (parity)

Proof.
Let p⃗ℓ =

(
ℓ

n
, · · · ,

ℓ

n

)
▶ P = {p⃗i | i odd}
▶ N = {p⃗i | i even}

If ∑
i xi = w, then for all ℓ ̸= w,

||x⃗ − p⃗w||2 < ||x⃗ − p⃗ℓ||2



Example (parity)

Theorem (Hajnal et al. [2022])

HNN(XOR) = 2n

Proof.
1. Suppose x⃗ is not an anchor.

2. It’s neighbors have opposite parity,
so they can’t be anchors either.

3. And so on... ⇒⇐



Question 3

How does NN relate to other complexity classes?



Example (majority)

Definition
The majority function is defined by

MAJ(x1, · · · , xn) = 1 ⇐⇒
n∑

i=1
xi ≥ n

2



Example (majority)

Theorem (Hajnal et al. [2022])
For all odd n > 0,

HNN(MAJ) = 2

Proof.
Take P = {1n}, N = {0n}.



Example (majority)

Theorem
For all even n > 0,

HNN(MAJ) = n

2
+ 2



Example (majority)

Definition
AC0 is the class of small* circuits with AND, OR, and NOT gates.

i.e., depth O(1) and size poly(n)



Example (majority)

Theorem (Hastad [1986])

MAJ ̸∈ AC0

Corollary

HNN ̸⊂ AC0
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Even majority

Theorem (DiCicco et al. [2024])
For all even n > 0,

HNN(MAJ) = n

2
+ 2



Proof (lower bound)

Let P ∪ N be an HNN representation of MAJ for even n.

Claim
For each x⃗ ∈ {0, 1}n with |x⃗| = n/2, there is a p⃗ ∈ P with p⃗ ̸= 1⃗ with x⃗ ≤ p⃗.*

* in coordinate-wise order



Proof (claim)

Proof of Claim.
▶ Let p⃗ ∈ P be nearest to x⃗ with xi = 1 but pi = 0.

▶ Let y⃗ = x⃗ − e⃗i and let q⃗ ∈ N be nearest to y⃗. Then,

∆(x⃗, p⃗) = ∆(y⃗, p⃗) + 1 > ∆(y⃗, q⃗) + 1
But ∆(x⃗, p⃗) < ∆(x⃗, q⃗) ≤ ∆(y⃗, q⃗) + 1

=⇒⇐=



Proof (claim)

Proof of Claim.
▶ So x⃗ ≤ p⃗.

▶ (Similarly, q⃗ ≤ y⃗.)

▶ Finally, |y⃗| = n/2 − 1 implies ∆(x⃗, p⃗) < n/2 and p⃗ ̸= 1⃗.



Proof (lower bound)

Let P ∪ N be an HNN representation of MAJ for even n.

Claim
For each x⃗ ∈ {0, 1}n with |x⃗| = n/2, there is a p⃗ ∈ P with p⃗ ̸= 1⃗ with x⃗ ≤ p⃗.

▶ Now assume |P ∪ N | ≤ n/2 + 1

▶ Since N cannot be empty, |P | ≤ n/2

▶ Construct x⃗ ∈ {0, 1}n which contradicts the claim:
▶ For each p⃗ ∈ P find some i where pi = 0, and set xi = 1.



Proof (lower bound)
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Observation 1

Theorem
Convex polytopes with m faces have m + 1
anchor NN representations.

Proof.
Place one positive anchor p⃗ inside the
polytope, and reflect p⃗ over each face.



Observation 1

Theorem

AND ◦ THR ⊆ NN

Corollary
Any CNF formula with m clauses has an
m + 1-anchor NN representation

Also holds for OR ◦ THR and DNFs!



Observation 2

Definition
The components of f : {0, 1}n → {0, 1}
are the connected components of f−1(1)
in the Hamming cube graph.

Figure: One component

Figure: Four components



Observation 2

Theorem
If f has m components, then any HNN representation
of f has at least m positive anchors.



Observation 2

Proof.
▶ Suppose a component C contains no anchors.

▶ Let p⃗ ∈ P be nearest to x⃗ ∈ C

=⇒ p⃗ is in a different component

▶ Let y⃗ ∈ f−1(0) lie on the shortest x⃗ → p⃗ path
and let q⃗ ∈ N be nearest to y⃗

▶ △ inequality =⇒ ∆(x⃗, p⃗) > ∆(x⃗, q⃗) =⇒⇐=



Observation 2

Lemma
There exists a CNF with m = Θ(n) clauses and 2Ω(m) components

Corollary
There exists a CNF with Θ(n) clauses with no poly(n)-size HNN representation



Summary

▶ Every CNF has a polynomial size NN representation
▶ There exists a CNF with no polynomial-size HNN representation
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Connections to circuits

Questions
▶ What circuit classes contain NN?

▶ Can a depth-two circuit compute NN?

▶ What circuit classes are contained in NN?
▶ Can NN help us prove circuit lower bounds?
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Nearest neighbors in depth three

Definition
OR ◦ AND ◦ THR is the class of
depth-three circuits with a polynomial
number of threshold gates at level one,
conjunctions at level two, and a
disjunction at the output.

Theorem (Murphy [1990])

NN ⊆ OR ◦ AND ◦ THR



Nearest neighbors in depth three

Recall that AND ◦ THR ⊆ NN, so

AND ◦ THR ⊆ NN ⊆ OR ◦ AND ◦ THR

Equivalently,

Convex polytopes∗ ⊆ NN ⊆ unions of convex polytopes∗

*with poly(n) faces



Nearest neighbors in depth two

What about Boolean anchors?

Theorem

HNN ⊆ THR ◦ MAJ

MAJ (the class) is just THR with poly(n)-bounded coefficients



Nearest neighbor complexity

Convex polytopes

Boolean circuits
Circuits computing nearest neighbors
Min-plus polynomial threshold functions
Sub-functions

Open questions



Min-plus polynomial threshold functions

Definition (Hansen and Podolskii [2015])
A min-plus polynomial threshold function (mpPTF) is an expression∗

min
i≤ℓ1

(Li(x⃗)) ≤ min
j≤ℓ2

(Rj(x⃗))

where {L1, · · · , Lℓ1} ∪ {R1, · · · , Rℓ2} are integer linear forms.

▶ The number of terms in an mpPTF is equal to ℓ1 + ℓ2,
▶ The maximum weight is equal to the largest absolute value of a coefficient.

∗we interpret as a Boolean function equal to 1 iff the inequality holds



Min-plus polynomial threshold functions

Definition
▶ mpPTF(∞) is the class of mpPTFs with poly(n) terms and unbounded weight.

▶ mpPTF(poly(n)) is the same class with poly(n)-bounded maximum weight.



Observation 3

Observation
The distance from x⃗ ∈ {0, 1}n to an anchor p⃗ ∈ Rn is a linear form:

∆(x⃗, p⃗) =
∑

i

(xi − pi)2 =
∑

i

[
x2

i − 2pixi + p2
i

]
=

∑
i

[
(1 − 2pi)xi + p2

i

]
= ⟨⃗1 − 2p⃗, x⃗⟩ + ||p⃗||22.



Observation 3

Lemma
▶ NN ⊆ mpPTF(∞)

▶ HNN ⊆ mpPTF(poly(n))

Proof.

The nearest anchor to x⃗ is positive ⇐⇒ min
p⃗∈P

(∆(x⃗, p⃗)) ≤ min
q⃗∈N

(∆(x⃗, q⃗))



What about the converse?

Lemma (Hansen and Podolskii [2015])

XOR ∈ mpPTF(poly(n))



What about the converse?

Proof.
Take the mpPTF

min {L0(x⃗), L2(x⃗), · · · } ≤ min {L1(x⃗), L3(x⃗), · · · }

where Li(x⃗) = i2 − 2i · (
∑n

i=1 xi).

Suppose ∑n
i=1 xi = ℓ and let k ̸= ℓ.

▶ Lℓ(x⃗) = −ℓ2

▶ Lk(x⃗) = k2 − 2kℓ = (k − ℓ)2 − ℓ2



What about the converse?

Corollary

HNN ⊊ mpPTF(poly(n))

Proof.
We proved before that XOR /∈ HNN.



What about the unbounded case?

Conjecture

NN ⊊ mpPTF(∞)
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Outline

Suppose we want to prove mpPTF(∞) ⊆ NN

Given an mpPTF
min
i≤ℓ1

(Li(x⃗)) ≤ min
j≤ℓ2

(Rj(x⃗))

If we can construct anchors P = {p⃗1, · · · , p⃗ℓ1} where

∆(x⃗, p⃗i) = Li(x⃗)

(similarly N = {q⃗1, · · · , q⃗ℓ2}) then we are done.



Idea 1

1. The distance from x⃗ to the all-zero anchor 0⃗ is

∆(x⃗, 0⃗) = x1 + x2 + · · · + xn

2. If we restrict the input space by identifying x1 = x2, then

∆(x⃗, 0⃗) = 2x1 + x3 + · · · + xn

3. =⇒ We can control coefficients by identifying input variables!



Idea 2

1. The distance from x⃗ to the all-zero anchor 0⃗ is

∆(x⃗, 0⃗) = x1 + x2 + · · · + xn

2. Let x⃗∗ = (x⃗, 1). Then,

∆(x⃗∗, 0⃗) = x1 + x2 + · · · + xn + 1

3. =⇒ We can introduce constant terms by adding constant variables!



Sub-functions

Definition
A subfunction of g(x1, · · · , xn) is obtained by fixing input variables as follows:

▶ Identification of variables (e.g., x1 = x2)

▶ Assigning variables to constants (e.g., x1 = 0).

Example
Subfunctions of x1 + · · · + xn introduce coefficients and constant terms:
x1 = x2 and x3 = · · · = xn = 1 yields 2x1 + (n − 2)



Closure

Definition
Let C be a collection of functions.
The closure C is the collection of sub-functions of elements of C obtained by
identifying/assigning polynomially-many variables*

This is quite natural: Circuit classes are already closed under this operation.

*with respect to the input dimension of the sub-function



Nearest neighbors vs. mpPTFs

Theorem
▶ NN = mpPTF(∞)
▶ HNN = mpPTF(poly(n))

Proof.
⟨ Apply Ideas 1 and 2 ⟩



Corollary 1 (HNN)

Corollary

HNN ̸⊂ MAJ ◦ MAJ

Proof Sketch.
There exists a function f (OMB ◦ AND2) where
▶ f ∈ mpPTF(poly(n)) by Hansen and Podolskii [2015], but
▶ f /∈ MAJ ◦ MAJ by Buhrman et al. [2007]



Corollary 2 (NN)

Corollary

NN ̸⊃ AND ◦ OR ◦ AND2

Proof Sketch.
There exists a function f where
▶ f /∈ mpPTF(∞) by Hansen and Podolskii [2015], but
▶ f ∈ AND ◦ OR ◦ AND2 by Hajnal et al. [1993]



Summary

▶ NN = mpPTF(∞)
▶ HNN = mpPTF(poly(n))
▶ =⇒ known results about mpPTF also apply to nearest neighbors



More results

▶ The more general k-nearest neighbors rule has the same (closure)
relationship with a more general version of mpPTF, based on expressions

The k’th smallest value in {Li(x⃗)} ≤ The k’th smallest value in {Ri(x⃗)}

▶ When k = O(1), kNN = NN
▶ When k = O(n), kNN contains SYM ◦ MAJ and ELDL
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Open questions

Open questions
▶ Does NN = NN?

▶ Is there f ∈ mpPTF(∞) but f /∈ NN?

▶ How does bit-complexity effect the expressiveness of NN?
▶ Kilic et al. [2023]: Can we represent THR with only log(n) bits per coordinate?

▶ What about approximate representations?



Thank you

?
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