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In this talk, we will lower bound the number of samples required to learn a
binary string from subsequences/supersequences.
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Hj = {h, : {0,1}" = {0,1} | y € {0,1}*},

where

hy () 1 v is a subsequence of x
X) =
4 0 otherwise

Example

ho(101) =1  h1(0011) = 0
hooo(000) =1 hy11(11) =0



Learning Complexity

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])



Learning Complexity

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

Fix a secret h, € H] and a distribution D over {0,1}".




Learning Complexity

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

7~

Fix a secret h, € H] and a distribution D over {0,1}".

Given a sample x(1)_ ... x(m) ~ D with labels h,(x(1), - h,(x(M),




Learning Complexity

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

7~

Fix a secret h, € H] and a distribution D over {0,1}".
Given a sample x(1) ... x(m ~ D with labels hy(x(l)), e ,hy(x(m)),

return an approximating h,:

Pyp( # hy(x)) <e




Learning Complexity

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

7~

Fix a secret h, € H] and a distribution D over {0,1}".
Given a sample x(1) ... x(m ~ D with labels hy(x(l)), e ,hy(x(’")),

return an approximating h,:

Pyp( # hy(x)) <e

Sample complexity: How many samples are needed to learn /1. (w.h.p.)?



Learning Complexity

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

7~

Fix a secret h, € H] and a distribution D over {0,1}".
Given a sample x(1) ... x(m ~ D with labels hy(x(l)), e ,hy(x(’")),

return an approximating h,:

P~ # hy(x)) < e

Sample complexity: How many samples are needed to learn /1. (w.h.p.)?

(Note: this resembles the trace reconstruction problem of [Batu et al., 2004])



Learning Complexity

Theorem ([Ehrenfeucht et al., 1989])
The sample complexity of PAC learning any family 4 (with failure probability d) is

O¢,s(VCdim(#H)),

where VCdim(#) denotes the Vapnik—Chervonenkis dimension of H.
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Definition
Let #H be a family of classifiers for some domain X (i.e., functions f : X — {0,1}.)
A subset S C X is shattered if every A C S is realized by a unique f4 € H:

1 xe€A
fa(x) =
0 xeS\A

The VC dimension of # is equal to the size of the largest shattered subset of X .

Example (Linear separators on R? have VC dimension 3)
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VC Dimension

Main Theorem
VCdim(#H}) = ©(k)
Proof (Outline)
» Define disjointness classifiers 7
» Prove J! > k for k < n/2.
> Use a reduction to show VCdim(#37, ) > VCdim(7}")

> Padding argument: VCdim(#37, ,) — VCdim(7]})
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Disjointness Classifiers

Let 7 denote the hypothesis class of size-k disjointness classifiers:

gp = {dA 2l 10,1} ‘ Ac <[Z]>}

dA(B):{l ANB =0

where

0 otherwise

[Kremer et al., 1999] looked at this set without the restriction that |A| = k:
j":jl”u...uj:

to prove that RA7E(DISJ") > Q(VCdim(J ")) = Q(n).
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Disjointness Classifiers
Lemma ([Kremer et al., 1999])
VCdim(J") =n

Proof.
The set of singletons S = {{1},---,{n}} C 2[" is shattered.

Indeed, any B = {{i1}, -+ ,{im}} C Sisrealized by A= [n] \ {i1, -+ ,im} C [n].

A B
{1, 2} 0

{2} {{1}}

{1} {{2}}

{3} {1 {2}




VC Dimension of J,” (Example)

Example (n = 4, k = 2)

If we want every A to have the same size, we can do this:

A B A B

{1, 2} 0 {1, 2} 0
{2} iy | — {23y {{1}}
{1} {2}} {1,3r | {2}
(| {2} {3, 47 | {{1}.{2}}
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VC Dimension of J

Lemma
VCdim(J") > k for k < n/2.

Proof.
We can still shatter a set of k singletons: S = {{1},{2},--- ,{k}}.

Indeed, every B = {{ii}, -+ ,{im}} C S is realized by A= [k]\ {i, - ,im} C [K].

But, A must contain exactly k elements.

= Add some unused elements from {{k + 1},--- ,{n}} to A as “padding”.

In the worst case, when B = S, we need k padding elements for A = ().

This is possible when |[{{k +1},--- ,{n}}| > k (i.e., k < n/2).



Reduction

Theorem
VCdim(’Hg,’;Jrk) > VCdim(J)") > k

Proof Idea:
There exist maps p : ([Z]) — {0,1}?""* and ¢ : 2l") — {0,1}3" such that

da(B) = h,ya)(6(B))

for all A, B.



Reduction

Theorem
VCdim(’Hg,’;Jrk) > VCdim(J)") > k

Proof Idea:
There exist maps p: (1) — {0,1}2""% and ¢ : 2l — {0,1}3" such that

da(B) = h,ya)(6(B))

for all A, B.

= Shattered sets under 7 map to shattered sets under Hg’g+k.
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Reduction from Disjointness

Proof.
Let a, b € {0,1}" denote the characteristic vectors of A, B C [n].

» ¢ independently maps 0 — 010 and 1 +— 100.

b 0 1 0 1

¢(b) | 010 | 100 | 010 | 100

» p independently maps 0 — 00 and 1 — 010

a 0 0 1 1

p(a) | 00 | 00 | 010 | 010

Note that every cell has exactly two zeros.
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Reduction from Disjointness (Example)

Let a = 0011 and b = 0101. Let a = 0011 and b = 1100.
> ¢(b) =010 100 010 100, > ¢(b) =100 100 010 010,
» p(a)= 00 00 010010 » p(a)= 00 00 010 010

p(a) is not a subsequence of ¢(b). p(a) is a subsequence of ¢(b).
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Reduction from Disjointness

b 0 1 ] 0 1
¢(b) | 010 | 100 | 010 | 100
a 0 | 0 1 1

p(a) | 00 | 00 | 010 | 010

Proof (cont.)
» If 2 and b are disjoint, then p(a) is a subsequence of ¢(b) (column-wise).
» Otherwise, partition ¢(b) and p(a) around the offending index i with a; = b; = 1.
¢(b) = B-100-5
p(a) =a-010-~

Two zeros in every cell = p(a) cannot be a subsequence of ¢(b) O
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Reduction from Disjointness

b 0 1 ] 0 1
¢(b) | 010 | 100 | 010 | 100
a 0 | 0 1 1

p(a) | 00 | 00 | 010 | 010

Proof (cont.)
Thus, p(a) is a subsequence of ¢(b) if and only if a is disjoint from b.

Note that |¢(b)| = 3n and [p(a)| = 2n + k.

— S C 2l" is shattered by 7 if and only if ¢(S) € {0,1}3" is shattered by H3n
L]
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Padding

Note that we may “pad” with ones
» ¢ independently maps 0 — 010 and 1 +— 100.

b 0 1 0 1

¢(b)| 010 | 100 | 010 | 100

» p independently maps 0 — 00 and 1 — 010

a 0 0 1 1

p(a)[ 00 | 00 | 010 | 010




Theorem
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VCdim(H) < k
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Conclusion

Theorem

For all n > 2k >0,
k
5 < VCdim(H7) < k

Proof.
Recall VCdim(#371)Y) > VCdim(7) > k only when k < n/2.

So, we substitute n = 2k to get

k < VCdim(HIV) < 5k



Final Comments

Other results

» The VC dimension of supersequence classifiers is also Q(k).
» The communication complexity of subsequence detection is (k).

» The threshold circuit complexity of subsequence detection is Q(k).

Open Questions
» What happens with larger alphabets?

> How is contiguity related to learning complexity?

> Contiguous string-matching is O(log |X| log k) [Golovnev et al., 2019].
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