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Subsequences

A subsequence of a binary string x is obtained by deleting bits from x .

10010111001000000000001010111111111111100101000
↓

10011000000000010101111111101000

In this talk, we will lower bound the number of samples required to learn a
binary string from subsequences/supersequences.
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Classifiers

Let Hn
k denote the hypothesis class of length-k subsequence classifiers:

Hn
k := {hy : {0, 1}n → {0, 1} | y ∈ {0, 1}k},

where

hy (x) =

{
1 y is a subsequence of x

0 otherwise

Example

h0(101) = 1 h10(0011) = 0
h000(000) = 1 h111(11) = 0
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Learning Complexity

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

Fix a secret hy ∈ Hn
k and a distribution D over {0, 1}n.

Given a sample x (1), · · · , x (m) ∼ D with labels hy (x
(1)), · · · , hy (x (m)),

return an hz ∈ Hn
k approximating hy :

Px∼D(hz(x) ̸= hy (x)) ≤ ϵ

Sample complexity: How many samples are needed to learn hz (w.h.p.)?

(Note: this resembles the trace reconstruction problem of [Batu et al., 2004])
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Learning Complexity

Theorem ([Ehrenfeucht et al., 1989])

The sample complexity of PAC learning any family H (with failure probability δ) is

Θϵ,δ(VCdim(H)),

where VCdim(H) denotes the Vapnik–Chervonenkis dimension of H.



6/22

VC Dimension

Definition
Let H be a family of classifiers for some domain X (i.e., functions f : X → {0, 1}.)

A subset S ⊆ X is shattered if every A ⊆ S is realized by a unique fA ∈ H:

fA(x) =

{
1 x ∈ A

0 x ∈ S \ A,

The VC dimension of H is equal to the size of the largest shattered subset of X .

Example (Linear separators on R2 have VC dimension 3)
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VC Dimension

Main Theorem

VCdim(Hn
k) = Θ(k)

Proof (Outline)

▶ Define disjointness classifiers J n
k

▶ Prove J n
k ≥ k for k ≤ n/2.

▶ Use a reduction to show VCdim(H3n
2n+k) ≥ VCdim(J n

k )

▶ Padding argument: VCdim(H3n
2n+k) −→ VCdim(Hn

k)
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Disjointness Classifiers

Let J n
k denote the hypothesis class of size-k disjointness classifiers:

J n
k :=

{
dA : 2[n] → {0, 1}

∣∣∣∣ A ∈
(
[n]

k

)}
where

dA(B) =

{
1 A ∩ B = ∅
0 otherwise

[Kremer et al., 1999] looked at this set without the restriction that |A| = k :

J n = J n
1 ∪ · · · ∪ J n

n

to prove that RA→B(DISJn) ≥ Ω(VCdim(J n)) = Ω(n).
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Disjointness Classifiers

Lemma ([Kremer et al., 1999])

VCdim(J n) = n

Proof.
The set of singletons S = {{1}, · · · , {n}} ⊂ 2[n] is shattered.

Indeed, any B = {{i1}, · · · , {im}} ⊆ S is realized by A = [n] \ {i1, · · · , im} ⊆ [n].

A B

{1, 2} ∅
{2} {{1}}
{1} {{2}}
{ } {{1}, {2}}
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VC Dimension of J n
k (Example)

Example (n = 4, k = 2)

If we want every A to have the same size, we can do this:

A B

{1, 2} ∅
{2} {{1}}
{1} {{2}}
{ } {{1}, {2}}

−→

A B

{1, 2} ∅
{2, 3} {{1}}
{1, 3} {{2}}
{3, 4} {{1}, {2}}
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VC Dimension of J n
k

Lemma
VCdim(J n

k ) ≥ k for k ≤ n/2.

Proof.
We can still shatter a set of k singletons: S = {{1}, {2}, · · · , {k}}.

Indeed, every B = {{i1}, · · · , {im}} ⊆ S is realized by A = [k] \ {i1, · · · , im} ⊆ [k].

But, A must contain exactly k elements.

⇒ Add some unused elements from {{k + 1}, · · · , {n}} to A as “padding”.

In the worst case, when B = S , we need k padding elements for A = ∅.

This is possible when |{{k + 1}, · · · , {n}}| ≥ k (i.e., k ≤ n/2).
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Reduction

Theorem
VCdim(H3n

2n+k) ≥ VCdim(J n
k ) ≥ k

Proof Idea:
There exist maps ρ :

([n]
k

)
→ {0, 1}2n+k and ϕ : 2[n] → {0, 1}3n such that

dA(B) = hρ(A)(ϕ(B))

for all A,B.

=⇒ Shattered sets under J n
k map to shattered sets under H3n

2n+k .
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Reduction from Disjointness

Proof.
Let a, b ∈ {0, 1}n denote the characteristic vectors of A,B ⊆ [n].

▶ ϕ independently maps 0 7→ 010 and 1 7→ 100.

b 0 1 0 1 · · ·
ϕ(b) 010 100 010 100 · · ·

▶ ρ independently maps 0 7→ 00 and 1 7→ 010

a 0 0 1 1 · · ·
ρ(a) 00 00 010 010 · · ·

Note that every cell has exactly two zeros.



13/22

Reduction from Disjointness

Proof.
Let a, b ∈ {0, 1}n denote the characteristic vectors of A,B ⊆ [n].

▶ ϕ independently maps 0 7→ 010 and 1 7→ 100.

b 0 1 0 1 · · ·
ϕ(b) 010 100 010 100 · · ·

▶ ρ independently maps 0 7→ 00 and 1 7→ 010

a 0 0 1 1 · · ·
ρ(a) 00 00 010 010 · · ·

Note that every cell has exactly two zeros.



13/22

Reduction from Disjointness

Proof.
Let a, b ∈ {0, 1}n denote the characteristic vectors of A,B ⊆ [n].

▶ ϕ independently maps 0 7→ 010 and 1 7→ 100.

b 0 1 0 1 · · ·
ϕ(b) 010 100 010 100 · · ·

▶ ρ independently maps 0 7→ 00 and 1 7→ 010

a 0 0 1 1 · · ·
ρ(a) 00 00 010 010 · · ·

Note that every cell has exactly two zeros.



14/22

Reduction from Disjointness (Example)

Let a = 0011 and b = 0101.

▶ ϕ(b) = 010 100 010 100,

▶ ρ(a) = 00 00 010 010

ρ(a) is not a subsequence of ϕ(b).

Let a = 0011 and b = 1100.

▶ ϕ(b) = 100 100 010 010,

▶ ρ(a) = 00 00 010 010

ρ(a) is a subsequence of ϕ(b).
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Reduction from Disjointness

b 0 1 0 1 · · ·
ϕ(b) 010 100 010 100 · · ·
a 0 0 1 1 · · ·
ρ(a) 00 00 010 010 · · ·

Proof (cont.)

▶ If a and b are disjoint, then ρ(a) is a subsequence of ϕ(b) (column-wise).

▶ Otherwise, partition ϕ(b) and ρ(a) around the offending index i with ai = bi = 1.

ϕ(b) = β · 100 · δ
ρ(a) = α · 010 · γ

Two zeros in every cell =⇒ ρ(a) cannot be a subsequence of ϕ(b)
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Reduction from Disjointness

b 0 1 0 1 · · ·
ϕ(b) 010 100 010 100 · · ·
a 0 0 1 1 · · ·
ρ(a) 00 00 010 010 · · ·

Proof (cont.)

Thus, ρ(a) is a subsequence of ϕ(b) if and only if a is disjoint from b.

Note that |ϕ(b)| = 3n and |ρ(a)| = 2n + k.

=⇒ S ⊆ 2[n] is shattered by J n
k if and only if ϕ(S) ∈ {0, 1}3n is shattered by H3n

2n+k .
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Padding

Note that we may “pad” with ones

▶ ϕ independently maps 0 7→ 010 and 1 7→ 100.

b 0 1 0 1 · · ·
ϕ(b) 010 100 010 100 · · · 1N

▶ ρ independently maps 0 7→ 00 and 1 7→ 010

a 0 0 1 1 · · ·
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Conclusion

Theorem
For all n ≥ 6

5k ≥ 0,
k

5
≤ VCdim(Hn

k) ≤ k

Proof.
Recall VCdim(H3n+N

2n+k ) ≥ VCdim(J n
k ) ≥ k only when k ≤ n/2.

So, we substitute n = 2k to get

k ≤ VCdim(H6k+N
5k ) ≤ 5k
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Final Comments

Other results
▶ The VC dimension of supersequence classifiers is also Ω(k).

▶ The communication complexity of subsequence detection is Θ(k).

▶ The threshold circuit complexity of subsequence detection is Ω(k).

Open Questions

▶ What happens with larger alphabets?

▶ How is contiguity related to learning complexity?

▶ Contiguous string-matching is Õ(log |Σ| log k) [Golovnev et al., 2019].
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Thank You

Questions?
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