The Learning Complexity of Subsequence Detection

Mason DiCicco, Daniel Reichman Worcester Polytechnic Institute

June 26, 2023

Subsequences

A **subsequence** of a **binary string** x is obtained by *deleting* bits from x.

Subsequences

A subsequence of a binary string x is obtained by *deleting* bits from x.

In this talk, we will **lower bound** the **number of samples** required to **learn a binary string** from subsequences/supersequences.

Classifiers

Let \mathcal{H}_k^n denote the **hypothesis class** of **length-**k **subsequence classifiers**:

$$\mathcal{H}_{k}^{n} := \{h_{y} : \{0,1\}^{n} \to \{0,1\} \mid y \in \{0,1\}^{k}\},\$$

where

$$h_{y}(x) = \begin{cases} 1 & y \text{ is a subsequence of } x \\ 0 & \text{otherwise} \end{cases}$$

Classifiers

Let \mathcal{H}_k^n denote the **hypothesis class** of **length**-k **subsequence classifiers**:

$$\mathcal{H}_{k}^{n} := \{h_{y} : \{0,1\}^{n} \to \{0,1\} \mid y \in \{0,1\}^{k}\},\$$

where

$$h_y(x) = \begin{cases} 1 & y \text{ is a subsequence of } x \\ 0 & \text{otherwise} \end{cases}$$

Example

$$h_0(101) = 1$$
 $h_{10}(0011) = 0$
 $h_{000}(000) = 1$ $h_{111}(11) = 0$

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

Fix a secret $h_y \in \mathcal{H}_k^n$ and a distribution \mathcal{D} over $\{0,1\}^n$.

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

```
Fix a secret h_y \in \mathcal{H}_k^n and a distribution \mathcal{D} over \{0,1\}^n.
Given a sample x^{(1)}, \cdots, x^{(m)} \sim \mathcal{D} with labels h_y(x^{(1)}), \cdots, h_y(x^{(m)}),
```

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

```
Fix a secret h_y \in \mathcal{H}_k^n and a distribution \mathcal{D} over \{0,1\}^n.

Given a sample x^{(1)}, \cdots, x^{(m)} \sim \mathcal{D} with labels h_y(x^{(1)}), \cdots, h_y(x^{(m)}), return an h_z \in \mathcal{H}_k^n approximating h_y:

\mathbb{P}_{x \sim \mathcal{D}}(h_z(x) \neq h_y(x)) \leq \epsilon
```

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

```
Fix a secret h_y \in \mathcal{H}_k^n and a distribution \mathcal{D} over \{0,1\}^n.

Given a sample x^{(1)}, \cdots, x^{(m)} \sim \mathcal{D} with labels h_y(x^{(1)}), \cdots, h_y(x^{(m)}), return an h_z \in \mathcal{H}_k^n approximating h_y:

\mathbb{P}_{x \sim \mathcal{D}}(h_z(x) \neq h_y(x)) \leq \epsilon
```

Sample complexity: How many samples are needed to learn h_z (w.h.p.)?

The PAC learning framework ([Shalev-Shwartz and Ben-David, 2014])

```
Fix a secret h_y \in \mathcal{H}_k^n and a distribution \mathcal{D} over \{0,1\}^n.

Given a sample x^{(1)}, \cdots, x^{(m)} \sim \mathcal{D} with labels h_y(x^{(1)}), \cdots, h_y(x^{(m)}), return an h_z \in \mathcal{H}_k^n approximating h_y:

\mathbb{P}_{x \sim \mathcal{D}}(h_z(x) \neq h_y(x)) \leq \epsilon
```

Sample complexity: How many samples are needed to learn h_z (w.h.p.)? (Note: this resembles the **trace reconstruction** problem of [Batu et al., 2004])

Theorem ([Ehrenfeucht et al., 1989])

The sample complexity of PAC learning any family \mathcal{H} (with failure probability δ) is

$$\Theta_{\epsilon,\delta}(\mathsf{VCdim}(\mathcal{H})),$$

where $VCdim(\mathcal{H})$ denotes the *Vapnik–Chervonenkis dimension* of \mathcal{H} .

Definition

Let \mathcal{H} be a family of classifiers for some domain \mathcal{X} (i.e., functions $f: \mathcal{X} \to \{0,1\}$.)

Definition

Let $\mathcal H$ be a family of classifiers for some domain $\mathcal X$ (i.e., functions $f:\mathcal X \to \{0,1\}$.)

A subset $S \subseteq \mathcal{X}$ is **shattered** if every $A \subseteq S$ is *realized* by a unique $f_A \in \mathcal{H}$:

$$f_{A}(x) = \begin{cases} 1 & x \in A \\ 0 & x \in S \setminus A, \end{cases}$$

Definition

Let \mathcal{H} be a family of classifiers for some domain \mathcal{X} (i.e., functions $f: \mathcal{X} \to \{0,1\}$.)

A subset $S \subseteq \mathcal{X}$ is **shattered** if every $A \subseteq S$ is *realized* by a unique $f_A \in \mathcal{H}$:

$$f_{A}(x) = \begin{cases} 1 & x \in A \\ 0 & x \in S \setminus A, \end{cases}$$

The **VC** dimension of \mathcal{H} is equal to the size of the *largest shattered subset of* \mathcal{X} .

Definition

Let \mathcal{H} be a family of classifiers for some domain \mathcal{X} (i.e., functions $f: \mathcal{X} \to \{0,1\}$.)

A subset $S \subseteq \mathcal{X}$ is **shattered** if every $A \subseteq S$ is *realized* by a unique $f_A \in \mathcal{H}$:

$$f_{A}(x) = \begin{cases} 1 & x \in A \\ 0 & x \in S \setminus A, \end{cases}$$

The **VC** dimension of \mathcal{H} is equal to the size of the *largest shattered subset of* \mathcal{X} .

Example (Linear separators on \mathbb{R}^2 have VC dimension 3)

Main Theorem

 $\mathsf{VCdim}(\mathcal{H}^n_k) = \Theta(k)$

Main Theorem

$$VCdim(\mathcal{H}_k^n) = \Theta(k)$$

Proof (Outline)

▶ Define disjointness classifiers \mathcal{J}_k^n

Main Theorem

$$VCdim(\mathcal{H}_k^n) = \Theta(k)$$

Proof (Outline)

- ▶ Define disjointness classifiers \mathcal{J}_k^n
- ▶ Prove $\mathcal{J}_k^n \ge k$ for $k \le n/2$.

Main Theorem

$$VCdim(\mathcal{H}_k^n) = \Theta(k)$$

Proof (Outline)

- ▶ Define disjointness classifiers \mathcal{J}_k^n
- Prove $\mathcal{J}_k^n \ge k$ for $k \le n/2$.
- ▶ Use a **reduction** to show $VCdim(\mathcal{H}_{2n+k}^{3n}) \ge VCdim(\mathcal{J}_k^n)$

Main Theorem

$$VCdim(\mathcal{H}_k^n) = \Theta(k)$$

Proof (Outline)

- ▶ Define disjointness classifiers \mathcal{J}_k^n
- Prove $\mathcal{J}_k^n \geq k$ for $k \leq n/2$.
- ▶ Use a **reduction** to show $VCdim(\mathcal{H}_{2n+k}^{3n}) \ge VCdim(\mathcal{J}_{k}^{n})$
- ▶ Padding argument: $VCdim(\mathcal{H}_{2n+k}^{3n}) \longrightarrow VCdim(\mathcal{H}_{k}^{n})$

Let \mathcal{J}_k^n denote the hypothesis class of size-k disjointness classifiers:

$$\mathcal{J}_k^n := \left\{ d_A : 2^{[n]} \to \{0,1\} \mid A \in {[n] \choose k} \right\}$$

where

$$d_{A}(B) = egin{cases} 1 & A \cap B = \emptyset \ 0 & ext{otherwise} \end{cases}$$

Let \mathcal{J}_k^n denote the hypothesis class of size-k disjointness classifiers:

$$\mathcal{J}_k^n := \left\{ d_A : 2^{[n]} \to \{0,1\} \mid A \in {[n] \choose k} \right\}$$

where

$$d_{A}(B) = \begin{cases} 1 & A \cap B = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

[Kremer et al., 1999] looked at this set without the restriction that |A| = k:

$$\mathcal{J}^n = \mathcal{J}_1^n \cup \dots \cup \mathcal{J}_n^n$$

to prove that $R^{A o B}(\mathsf{DISJ}^n) \geq \Omega(\mathsf{VCdim}({\color{red}\mathcal{J}^n})) = \Omega(n).$

```
Lemma ([Kremer et al., 1999])

VCdim(\mathcal{J}^n) = n
```

Proof.

The set of singletons $S = \{\{1\}, \cdots, \{n\}\} \subset 2^{[n]}$ is shattered.

```
Lemma ([Kremer et al., 1999])

VCdim(\mathcal{J}^n) = n
```

Proof.

The set of singletons $S = \{\{1\}, \dots, \{n\}\} \subset 2^{[n]}$ is shattered.

```
Indeed, any B = \{\{i_1\}, \dots, \{i_m\}\} \subseteq S is realized by A = [n] \setminus \{i_1, \dots, i_m\} \subseteq [n].
```

Lemma ([Kremer et al., 1999])

 $VCdim(J^n) = n$

Proof.

The set of singletons $S = \{\{1\}, \dots, \{n\}\} \subset 2^{[n]}$ is shattered.

Indeed, any $B = \{\{i_1\}, \dots, \{i_m\}\} \subseteq S$ is realized by $A = [n] \setminus \{i_1, \dots, i_m\} \subseteq [n]$.

Α	В
{1, 2}	Ø
{2 }	{{1}}}
{1 }	{{2}} }
{ }	$\{\{1\},\{2\}\}$

VC Dimension of \mathcal{J}_k^n (Example)

Example
$$(n = 4, k = 2)$$

If we want every A to have the same size, we can do this:

Α	В		Α	В
{ 1 , 2 }	Ø		{1, 2}	Ø
{2 }	{{1}}}	\longrightarrow	{2, 3}	{{1}}}
{ <mark>1</mark> }	{{2}}		{ 1 , 3}	{{2}}
{ }	$\{\{1\},\{2\}\}$		{3, 4}	{{1}, {2}}

Lemma

 $VCdim(\mathcal{J}_k^n) \ge k \text{ for } k \le n/2.$

Lemma

 $VCdim(\mathcal{J}_k^n) \ge k \text{ for } k \le n/2.$

Proof.

We can still shatter a set of k singletons: $S = \{\{1\}, \{2\}, \cdots, \{k\}\}.$

Lemma

 $VCdim(\mathcal{J}_k^n) \ge k \text{ for } k \le n/2.$

Proof.

We can still shatter a set of k singletons: $S = \{\{1\}, \{2\}, \dots, \{k\}\}.$

Indeed, every $B = \{\{i_1\}, \dots, \{i_m\}\} \subseteq S$ is realized by $A = [k] \setminus \{i_1, \dots, i_m\} \subseteq [k]$.

Lemma

 $VCdim(\mathcal{J}_k^n) \ge k \text{ for } k \le n/2.$

Proof.

We can still shatter a set of k singletons: $S = \{\{1\}, \{2\}, \dots, \{k\}\}.$

Indeed, every $B = \{\{i_1\}, \dots, \{i_m\}\} \subseteq S$ is realized by $A = [k] \setminus \{i_1, \dots, i_m\} \subseteq [k]$.

But, A must contain *exactly k* elements.

Lemma

 $VCdim(\mathcal{J}_k^n) \ge k \text{ for } k \le n/2.$

Proof.

We can still shatter a set of k singletons: $S = \{\{1\}, \{2\}, \dots, \{k\}\}.$

Indeed, every $B = \{\{i_1\}, \dots, \{i_m\}\} \subseteq S$ is realized by $A = [k] \setminus \{i_1, \dots, i_m\} \subseteq [k]$.

But, A must contain *exactly k* elements.

 \Rightarrow Add some unused elements from $\{\{k+1\},\cdots,\{n\}\}$ to A as "padding".

Lemma

 $VCdim(\mathcal{J}_k^n) \ge k \text{ for } k \le n/2.$

Proof.

We can still shatter a set of k singletons: $S = \{\{1\}, \{2\}, \dots, \{k\}\}.$

Indeed, every $B = \{\{i_1\}, \dots, \{i_m\}\} \subseteq S$ is realized by $A = [k] \setminus \{i_1, \dots, i_m\} \subseteq [k]$.

But, A must contain exactly k elements.

 \Rightarrow Add some unused elements from $\{\{k+1\},\cdots,\{n\}\}$ to $oldsymbol{A}$ as "padding".

In the worst case, when B = S, we need k padding elements for $A = \emptyset$.

Lemma

 $VCdim(\mathcal{J}_k^n) \ge k \text{ for } k \le n/2.$

Proof.

We can still shatter a set of k singletons: $S = \{\{1\}, \{2\}, \dots, \{k\}\}.$

Indeed, every $B = \{\{i_1\}, \dots, \{i_m\}\} \subseteq S$ is realized by $A = [k] \setminus \{i_1, \dots, i_m\} \subseteq [k]$.

But, A must contain *exactly k* elements.

 \Rightarrow Add some unused elements from $\{\{k+1\},\cdots,\{n\}\}$ to $oldsymbol{A}$ as "padding".

In the worst case, when B = S, we need k padding elements for $A = \emptyset$.

This is possible when $|\{\{k+1\},\cdots,\{n\}\}| \ge k$ (i.e., $k \le n/2$).

Reduction

Theorem

$$VCdim(\mathcal{H}_{2n+k}^{3n}) \ge VCdim(\mathcal{J}_{k}^{n}) \ge k$$

Proof Idea:

There exist maps $\rho: {[n]\choose k} \to \{0,1\}^{2n+k}$ and $\phi: 2^{[n]} \to \{0,1\}^{3n}$ such that

$$d_{\mathsf{A}}(B) = h_{\rho(\mathsf{A})}(\phi(B))$$

for all A, B.

Reduction

Theorem

$$VCdim(\mathcal{H}_{2n+k}^{3n}) \ge VCdim(\mathcal{J}_k^n) \ge k$$

Proof Idea:

There exist maps $\rho: \binom{[n]}{k} \to \{0,1\}^{2n+k}$ and $\phi: 2^{[n]} \to \{0,1\}^{3n}$ such that

$$d_{\mathcal{A}}(B) = h_{\rho(\mathcal{A})}(\phi(B))$$

for all A, B.

 \implies Shattered sets under \mathcal{J}_k^n map to shattered sets under \mathcal{H}_{2n+k}^{3n} .

Proof.

Let $a, b \in \{0,1\}^n$ denote the characteristic vectors of $A, B \subseteq [n]$.

Proof.

Let $a, b \in \{0, 1\}^n$ denote the characteristic vectors of $A, B \subseteq [n]$.

 $ightharpoonup \phi$ independently maps $0 \mapsto 010$ and $1 \mapsto 100$.

Ь	0	1	0	1	
ϕ (b)	010	100	010	100	• • •

ho independently maps $0\mapsto 00$ and $1\mapsto 010$

a	0	0	1	1	• • • •
ho(a)	00	00	010	010	• • •

Proof.

Let $a, b \in \{0, 1\}^n$ denote the characteristic vectors of $A, B \subseteq [n]$.

 $ightharpoonup \phi$ independently maps $0 \mapsto 010$ and $1 \mapsto 100$.

Ь	0	1	0	1	
$\phi(b)$	010	100	010	100	• • •

ho independently maps $0\mapsto 00$ and $1\mapsto 010$

а	0	0	1	1	• • •
ho(a)	00	00	010	010	• • •

Note that every cell has **exactly two zeros**.

Let a = 0011 and b = 0101.

Let
$$a = 0011$$
 and $b = 0101$.

$$ightharpoonup \phi(b) = 010\ 100\ 010\ 100,$$

Let
$$a = 0011$$
 and $b = 0101$.

- $ightharpoonup \phi(b) = 010\ 100\ 010\ 100,$
- $\rho(a) = 00 \quad 00 \quad 010 \quad 010$

```
Let a = 0011 and b = 0101.

\phi(b) = 010 \ 100 \ 010 \ 100,

\rho(a) = 00 \ 00 \ 010 \ 010

\rho(a) is not a subsequence of \phi(b).
```

Let
$$a = 0011$$
 and $b = 0101$.

$$ightharpoonup \phi(b) = 010\ 100\ 010\ 100,$$

$$\rho(a) = 00 \quad 00 \quad 010 \quad 010$$

 $\rho(a)$ is not a subsequence of $\phi(b)$.

Let a = 0011 and b = 1100.

$$ightharpoonup \phi(b) = 100\ 100\ 010\ 010,$$

$$ho(a) = 00 00 010 010$$

 $\rho(a)$ is a subsequence of $\phi(b)$.

Ь	0	1	0	1	
$\phi(b)$	010	100	010	100	
a	0	0	1	1	
$\rho(a)$	00	00	010	010	

Proof (cont.)

▶ If a and b are disjoint, then $\rho(a)$ is a subsequence of $\phi(b)$ (column-wise).

Ь	0	1	0	1	
$\phi(b)$	010	100	010 100		• • • •
a	0	0	1	1	
$\rho(a)$	00	00	010	010	

Proof (cont.)

- ▶ If a and b are disjoint, then $\rho(a)$ is a subsequence of $\phi(b)$ (column-wise).
- ▶ Otherwise, partition $\phi(b)$ and $\rho(a)$ around the offending index i with $a_i = b_i = 1$.

$$\phi(b) = \beta \cdot 100 \cdot \delta$$
$$\rho(a) = \alpha \cdot 010 \cdot \gamma$$

Ь	0	1	0	1	
$\phi(b)$	010	100	010	100	• • •
a	0	0	1	1	
$\rho(a)$	00	00	010	010	

Proof (cont.)

- ▶ If a and b are disjoint, then $\rho(a)$ is a subsequence of $\phi(b)$ (column-wise).
- ▶ Otherwise, partition $\phi(b)$ and $\rho(a)$ around the offending index i with $a_i = b_i = 1$.

$$\phi(b) = \beta \cdot 100 \cdot \delta$$
$$\rho(a) = \alpha \cdot 010 \cdot \gamma$$

Two zeros in every cell $\implies \rho(a)$ cannot be a subsequence of $\phi(b)$

b	0	1	0	1	• • • •
$\phi(b)$	010	100	010	100	
а	0	0	1	1	
ho(a)	00	00	010	010	

Proof (cont.)

Thus, $\rho(a)$ is a subsequence of $\phi(b)$ if and only if a is disjoint from b.

Ь	0	1	0	1	
$\phi(b)$	010	100	010	100	
a	0	0	1	1	
$\rho(a)$	00	00	010	010	

Proof (cont.)

Thus, $\rho(a)$ is a subsequence of $\phi(b)$ if and only if a is disjoint from b.

Note that $|\phi(b)| = 3n$ and $|\rho(a)| = 2n + k$.

b	0	1	0	1	• • •
$\phi(b)$	010	100	010	100	
a	0	0	1	1	
$\rho(a)$	00	00	010	010	

Proof (cont.)

Thus, $\rho(a)$ is a subsequence of $\phi(b)$ if and only if a is disjoint from b.

Note that $|\phi(b)| = 3n$ and $|\rho(a)| = 2n + k$.

 $\implies S \subseteq 2^{[n]}$ is shattered by \mathcal{J}_k^n if and only if $\phi(S) \in \{0,1\}^{3n}$ is shattered by \mathcal{H}_{2n+k}^{3n} .

Padding

Note that we may "pad" with ones

Padding

Note that we may "pad" with ones

 $ightharpoonup \phi$ independently maps $0 \mapsto 010$ and $1 \mapsto 100$.

b	0	1	0	1	
$\phi(b)$	010	100	010	100	 1 ^N

▶ ρ independently maps $0 \mapsto 00$ and $1 \mapsto 010$

а	0	0	1	1	
$\rho(a)$	00	00	010	010	

Conclusion

Theorem

For all
$$n \geq \frac{6}{5}k \geq 0$$
,

$$\frac{k}{5} \leq \mathsf{VCdim}(\mathcal{H}_k^n) \leq k$$

Conclusion

Theorem

For all
$$n \geq \frac{6}{5}k \geq 0$$
,

$$\frac{k}{5} \leq \mathsf{VCdim}(\mathcal{H}_k^n) \leq k$$

Proof.

Recall
$$VCdim(\mathcal{H}_{2n+k}^{3n+N}) \ge VCdim(\mathcal{J}_k^n) \ge k$$
 only when $k \le n/2$.

So, we substitute n = 2k to get

$$k \leq \mathsf{VCdim}(\mathcal{H}_{5k}^{6k+N}) \leq 5k$$

Final Comments

Other results

- ▶ The VC dimension of **supersequence** classifiers is also $\Omega(k)$.
- ▶ The **communication complexity** of subsequence detection is $\Theta(k)$.
- ▶ The **threshold circuit complexity** of subsequence detection is $\Omega(k)$.

Open Questions

- What happens with larger alphabets?
- How is contiguity related to learning complexity?
 - **Contiguous** string-matching is $\tilde{O}(\log |\Sigma| \log k)$ [Golovnev et al., 2019].

Thank You

Questions?

References I

- Batu, T., Kannan, S., Khanna, S., and McGregor, A. (2004). Reconstructing strings from random traces. *Departmental Papers (CIS)*, page 173.
- Ehrenfeucht, A., Haussler, D., Kearns, M., and Valiant, L. (1989). A general lower bound on the number of examples needed for learning. *Information and Computation*, 82(3):247–261.
- Golovnev, A., Göös, M., Reichman, D., and Shinkar, I. (2019).

 String matching: Communication, circuits, and learning.

 In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

References II

- Kremer, I., Nisan, N., and Ron, D. (1999).
 On randomized one-round communication complexity.
 Computational Complexity, 8(1):21–49.
- Shalev-Shwartz, S. and Ben-David, S. (2014).

 Understanding machine learning: From theory to algorithms.

 Cambridge university press.